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6. ‘Filtering’ strategies for identifying causal variants 



Genome Wide Association Studies (GWAS): Common SNPs 



Published Genome-Wide Associations through 6/2012  
(GWAS hits at p<5x10-8 for 17 trait categories; Individual Chromosomal Locations) 

NHGRI GWA Catalog (www.genome.gov/GWAStudies) 

http://www.genome.gov/GWAStudies


• GWAS focusing on common variations 
have resulted in unequivocal statistical 
associations 

The Limitations of Standard GWA Study Paradigms 

• Associated genes have, on average, 
very small effects on disease (Odds 
Ratios of ~1.2-1.4) 

• Collectively, the variations typically 
explain a very small fraction of the 
disease burden in the population (e.g., 4-
10%) 

• How can contemporary GWA study 
paradigms be extended, complemented 
or replaced to advance the identification 
and characterization of genetic factors 
contributing to disease? Detect Rare 
variations? 



 ‘Collapsing’ Rare Variations Based on Functional ‘Features’ 

…ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTTGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGTGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGGGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGTGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 

… 
…ACGTAGCTAGGGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 

 
 

…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGAATCGAG… 
…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…CCGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 

… 
…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 

Case Sequences 

Control Sequences 

Common Variant 
Rare Variants 

 Genomic Feature (e.g., Binding Site) 

Basic Intuition: Compare the Collective Frequency of Variants Between, e.g., Groups 



Functional Annotations: Bioinformatic Predictions 

Plumpton and Barnes. “Predictive Functional Analysis of Polymorphisms: An Overview.” in Bioinformatics for Geneticists. Wiley, 2007 

Nonsense SNVs 
Frameshift Structural Variants 

Splice Change 

Damaging ns cSNPs 

Protein Motif Damaging 

Transcription 
Factor Binding 

Disrupting 

microRNA 
Binding Site 
Disrupting 

Exonic Splicing 
Enhancer 

Exonic Splicing 
Silencer 

We have developed methodology and tools for comprehensive bioinformatic WGS annotation 
(Schork, Torkamani and colleagues: Bioinformatics 2008, 2009; Cancer Research (2009), Nat Gen Rev (2010), Genomics (2011)) 



Defined Region(s) vs. Moving Window Analyses 

…ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGTGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGGGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 

… 
…ACGTAGCTAGGGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 

 
 

…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGAATCGAG… 
…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 
…CCGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 

… 
…ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG… 

Case Sequences 

Control Sequences 

… 



Multiple ‘Driver’ Tumor Mutations in the Same Gene/Protein 

Neutral SNPs      Congenital Disease SNPs     Tumor SNPs 

Random, Deficit, Enrichment 

Torkamani, Verkhivker, Schork. Cancer Letters. 2008 

Torkamani Schork. Cancer Research. 68; 2008 



Collections of ‘Causally Associated’ Rare Germline Variants 

• 1000 Genomes Project (www.1000genomes.org) 

http://www.1000genomes.org/


Whole Genome Sequencing Has Arrived… 

The ‘$1,000 Genome’ 



Multilocus Association Studies with DNA Sequencing Data 



Other Methods 



 The ‘Anna Karenina’ or ‘Extreme Allelic Heterogeneity’ 
(EAH) Rare Variant Setting vs. Other Settings 

Most studied: ‘Extreme Allelic Heterogeneity’ (EAH) setting. 'Happy families are all 
alike; every unhappy family is unhappy in its own way.‘ Leo Tolstoy, Anna Karenina 

Common Variant EAH 

Synergistic Effects Region Specific EAH 

X X 

X 
X 

vs. 

Compound Heterozygosity 

Roach et al. Science (2010) 



Approaches for the Analysis of Collections of Rare Variants  

Summary Statistics 
 
• Leverages, e.g., weighted averages, sample diversity measures, sample 
distances between groups, etc. at the group summary level 
 
Sequence Similarity and Diversity Measures 
 
• Compare the nucleotide content of an individual’s sequence against all other 
individuals and look for patterns among/between, e.g., cases and controls 
 
Regression Methods 
 
• Phenotype is the dependent and individual variants, collections of variants, non-
genetic factors, and interaction terms as independent/predictor variable 
 

Phase-Dependent Models (Compound Heterozygosity) 
 
• Requires phase information and contrasting cis/trans effect models. 

Bansal, Libiger, Torkamani, Schork. Nature Reviews Genetics. November 2010 



Sanofi/Scripps Study: Gene Sequence Variation and Obesity 

• 298 Individuals (148 morbidly obese; 150 controls) 
 

• Two endocannabinoid genes sequenced using Illumina GA (FAAH; MGLL)   
 

• Standard assembly for SNP identification (60x coverage; 3 reads per variant) 
 

• 242 variants identified in FAAH (many novel and rare): 31 kb of sequence 
 

• 1232 variants identified in MGLL (many novel and rare): 157 kb of sequence 

• FAAH: located on chromosome 1p33, known to hydrolize anandamide (AEA), 
and other fatty acid amides 
 

• MGLL: located on chromosome 3q21.3, a presynaptic enzyme that hydrolyzes 
2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid found in the 
brain  
 

Harismendy et al. Genome Biol. 2010 Nov 30;11(11):R118. PMID: 21118518 
Bansal et al.  Pac Symp Biocomput. 2011:76-87. PMID: 21121035 



Bansal et al. Nature Reviews: Genetics (2010) 



• Extreme Heterogeneity (Li and Leal 2008) 

• Additive/Cumulative (Morris and Zeggini 2010) 

• Synergy/Combinations (Wessel and Schork 2006; Schork et al. 2008)  
• Opposing Rare Allele Effects (Han and Pan 2010) 

• Common + Rare (Madsen and Browning 2009; Han and Pan 2010) 

• Compound Heterozygosity (?) 

Multiple Variant Effects May Shaping Gene Function  

Tewhey et al. 2011 



Different Methods Applied to the MGLL Gene 

Set Method (Hoh and Ott 2003) 
 
Omnibus Haplotype (Fallin et al. 2001) 
 
Logic regression (Kooperberg et al. 2001) 
 
Ridge regression (Malo et al. 2008) 
 
Sequence similarity (Nievergelt et al. 2007) 
 
Diversity (Jost 2007) 
 
Distance Dispersion (Anderson 2006) 
 
Subset selection (Bhatia et al. 2010) 
 
Weighted average (Madsen et al. 2009) 
 
Hotelling’s T-square (Li and Leal 2008) 
 
Fisher’s exact, single locus test 

Bansal et al. PSB 2011 



Distance-Based Sequence Analysis for Associations: 
Simple Nucleotide-Level Identity-By-State Similarity Matrix 

• ‘Distance’ measure is important and may impact inferences… 
• Weighting schemes can be used to leverage information about positions 
• Nucleotide sharing assumes alignments are perfect and capture structural variations 
• Nucleotide sharing does not consider multinucleotide variations as single variations 
• Take a ‘window’ of the genome, analyze it, and move to a new window… 

 
Simple IBS 

Sharing 

Sequence Diversity/Similarity Measure Approach 

Pan W. Relationship between genomic distance-based regression and 
kernel machine regression for multi-marker association testing. Genet 
Epidemiol. 2011 [Epub ahead of print]; PMID:21308765 



Relating Variation in Similarity to Outcomes: MDMR/GAMOVA 

No a priori clustering or data reduction: test of predictors and variation in matrix 



GAMOVA based association analysis with sequence data 
Wessel and Schork, AJHG (2006); Schork et al. Adv Gen (2008);  

Ordered by BMI Ordered by similarity 

Similarity Approach (Synergy) 



Diversity Methods: Summary Measures vs. Comparing 
Individual Sequences 

VS. 

VS. 

Summary Measure Approach Sequence Diversity/Similarity Measure Approach 



Problem 1: There will likely be many more ‘predictors’ than subjects 

Multilocus Regression for Sequence-Based Associations 

egebggbcbgbgbgbgbgbgbb nnmmlkkkkjjjj +++++++++++++= ++++ 1111122110   Phenotype

Common Genotypes Rare Variants 

Collapsed Rare 
Variants (‘Features’) 

Covariate 
Effect 

Intercept 
(Average) 

Gene x 
Environment 
Interaction 

Gene x Gene 
Interaction 

Problem 2: Collinearity between predictors (due to LD or by definition) 

Solution?: Some form of regularization or shrinkage:   

Regression Method Approach (Stepwise, LASSO, Ridge, etc.) 



Regression-Based Multilocus Association Analysis 

• Problem: a researcher won’t know a priori which situation represents the truth… 



Genomic Features with Collapsed Variations 

FAAH
NS H3K27 TFBS FOX2 Amidase

# of variants 5 29 4 14 5
Dispersion (Dis) 0.59 0.05 0.77 0.99 0.61
Diversity (Div) 0.43 0.42 0.81 0.33 0.46
MDMR Similarity (Sim) 0.19 0.21 0.05 0.14 0.41
Li & Leal (LL) 0.60 0.03 0.60 1.00 0.50
Subset Selection (SS) 1.00 0.01 0.60 0.75 0.60
Madsen & Browning (MB) 1.00 0.01 0.33 1.00 0.75
Logic Regression (LR) 0.23 0.18 0.39 0.22 0.48
Ridge Regresssion (RR) 0.35 0.09 0.06 0.33 0.54
PLINK Haplotype (Phap) NA 0.92 NA 0.34 0.61
PLINK Set Analysis (Pset) 1.00 1.00 0.02 1.00 1.00

MGLL
NS H3K27 TFBS FOX2 Amidase

# of variants 9 100 11 3 0
Dispersion 0.28 0.99 0.02 0.72 NA
Diversity 0.77 0.65 0.73 0.64 NA
MDMR 0.81 0.07 0.67 0.29 NA
Li & Leal 1.00 1.00 1.00 0.75 NA
SubsetSelection 0.60 0.43 1.00 1.00 NA
Madsen & Browning 0.75 0.30 0.02 0.20 NA
Logic Regression 0.35 0.67 0.02 0.49 NA
Ridge Reg. 0.71 0.50 0.01 0.61 NA
PLINK Haplotype NA 0.81 0.07 NA NA
PLINK Set Analysis 1.00 0.43 0.05 1.00 NA

Table 2. P-values for association for each analysis method for specific sets of collapsed variations in the MGLL Gene 
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Bansal et al. PSB 2011 



Simulation-based Comparison of Methods 

http://www.biostat.umn.edu/~weip/paper/RV2.pdf 

• Simulate a wide variety of settings: 
with LD, with opposite effect 
variants, with neutral variants, etc. 
 

• Fit a number of different methods 
 

• The Kernel Machine Regression 
(KMR) which was shown to be 
equivalent to GAMOVA/MDMR 
similarity-based method was one of 
the most consistently best 
performers 



Additional Issues with Rare Variant Analysis 

• Sequencing and Genotyping Errors 
 

• Phasing and Diplotypic Effects 
 

• Stratification 
 

• The Use of In Silico Controls (e.g., 1000 Genomes Data) 
 

• Moving Window vs. Annotation-Based Analyses 
 

• Imputation 
 

• Multiple Comparisons 

• Properties of Methods in Different Scenarios! 



CopenhagenGenomics 02/22/2011 

Interpreting Genetic Variation is THE Issue… 



Functional Annotations: Bioinformatic Predictions 

Plumpton and Barnes. “Predictive Functional Analysis of Polymorphisms: An Overview.” in Bioinformatics for Geneticists. Wiley, 2007 

Nonsense SNVs 
Frameshift Structural Variants 

Splice Change 

Damaging ns cSNPs 

Protein Motif Damaging 

Transcription 
Factor Binding 

Disrupting 

microRNA 
Binding Site 
Disrupting 

Exonic Splicing 
Enhancer 

Exonic Splicing 
Silencer 

We have developed methodology and tools for comprehensive bioinformatic WGS annot  
(Schork, Torkamani and colleagues: Bioinformatics 2008, 2009; Cancer Research (2009), Nat Gen Rev (2010), Genomics (2011)) 



Functional Annotations: The Limits of Conservation 

• Review: Lahiry, Torkamani, Schork, Hegele. Nature Reviews Genetics 11; 2010 
• Cancer Predictions: Torkamani, Schork. Cancer Research 68; 2008 

Torkamani, Kannan, Taylor, Schork. PNAS 105:9011-9016; 2008 
 
Positions (residues/amino acids) of ~1000 disease causing variants in kinase proteins 
contrasted with the positions of ~1000 kinase variants not known to cause disease 

Torkamani, Schork 

SIFT 



Functional Annotations: Non-Coding Regions 

Torkamani and Schork. Bioinformatics 24(16):1787-92; 2008 
 
ENCODE features of the positions of 102 known disease-causing variants contrasted 
with the positions of 1049 non-disease-causing 

Some features non-assay dependent; e.g., proximity to a TF start or end site 

http://genomics.scripps.edu/ADVISER/Home.jsp 



Functional Predictions of Variants in Public Databases 

Variant Types CGI 69 1000 Genomes dbSNP (130) HGM

Total number of variants: 7300345 12052647 7463633 48836

Total SNPs: 3721410 10462071 3803614 48836
Total Insertions: 1381717 590109 2116683 0
Total Deletions: 1534599 1000467 1144309 0
Total rearrangements: 662619 0 399027 0

Nonsense SNPs: 429 1267 2506 10544
Frameshift Structural Variants: 3716 4911 18127 0
Insertions: 1675 3348 10552 0
Deletions: 1636 1563 7053 0
Rearrangements: 405 0 522 0
Splicing Change Variants: 3021 1630 3833 118
Probably Damaging nscSNPs: 6202 20614 24893 28441
Possibly Damaging nscSNPs: 3061 10130 12189 4145
Protein motif damaging Variants: 4215 8773 20550 21436
TFBS Disrupting Variants: 5274 2749 3590 1
miRNA-BS Disrupting Variants: 555 1412 1233 75
ESE-BS Disrupting Variants: 3917 8177 11410 4738
ESS-BS Disrupting Variants: 2057 3168 4507 1357
Total Likely Functional Variants: 26775 49890 75983 44412
Rate of Likely Functional Variants: 0.004 0.004 0.010 0.909



Tools for In Silico Functional Prediction of Variants 
• Model actual biophysical processes (e.g., protein structure, TF binding) 

 
• Build classifiers using sequence information about the variants 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Statistical RANKING algorithms are need to prioritize variants in a study 
  



Example Issues:  
 
• Determining individual ancestry or locus/allele-specific ancestry 

 
• Unmatched (based on ancestry) cases and controls in a GWAS-seq = false positives 

 
• Reference panel for determining the ‘novelty’ of a variant involves different ancestry 



Population-Level Phenomena and Global Diversity 
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Africa 
 
• greater diversity 
• selection has washed away 

some older deleterious 
alleles 

• less homozygosity for older 
deleterious  alleles 

 
Middle East 
 
• only migrant genotypes 

represented  
• early bottleneck created 
 
Europe 
 
• only migrant genotypes 

represented 
• not enough time for 

selection to wash away 
deleterious genotypes 

• homozygosity for 
deleterious alleles is greater 

Lohmueller et al. Nature. 2008 451:994-7 



http://archaeology.about.com/od/stoneage/ss/tishkoff_2.htm 

Available Whole Genome Sequences for Diversity Studies 

MX=5 

YR=9 

CE=9 

CH=4 

JP=4 TS=4 

GI=4 

MK=4 
LW=4 

AS=5 

completegenomics.com 

1. Identify all derived (i.e., non-chimp genome) alleles in each genome (30,000,000+) 
2. Functionally characterize all variants (coding and non-coding) via bioinformatics analysis 
3. Compare total number and rates per genome of functional variants across categories 

 
4. Address the question of whether functional genomic diversity plagues ‘filtering’ strategy  

http://www.clker.com/clipart-2333.html
http://www.clker.com/clipart-2333.html


52 Unrelated Individual Whole Genome Variants (CGI) 



Genome Wide Derived (non-Chimp, PanTro2) Alleles 
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Historical bottlenecks, migrations, founder effects, random inbreeding, lack of time for selective pressure to 
operate, etc. have left an imprint on contemporary global standing variation and homozygosity in non-African 
populations on a WGS functional variant basis (extends the work of Bustamante et al.) 



Population Specific Alleles (Unique to Each Population) 

• The rate of novel functional variants (not just homozygous) is significantly higher in non-Africans 
 

• The rate is uniformly higher across ALL functional classes, not just ns cSNPs 
 

• Selection has had less time to ‘purifiy’ the European and Asian population (i.e., replicated Lohmuller et al.) 

Variant Type Label AFR EUR ASN AFR vs EUR AFR vs ASN EUR vs ASN
Total number of variants: 7614850 2024886 1294731
Nonsense SNPs rate 1 0.500 0.840 0.842 6.931E-09 6.329E-07 4.910E-01
Frameshift Structural Variants rate 2 1.663 3.008 2.989 1.597E-34 6.239E-25 4.621E-01
Frameshift Insertion rate 3 0.657 1.274 1.383 6.368E-19 1.089E-18 2.006E-01
Frameshift Deletion rate 4 0.879 1.417 1.352 3.877E-12 1.584E-07 3.102E-01
Frameshift Rearrangement rate 5 0.127 0.316 0.255 2.614E-09 2.228E-04 1.572E-01
Splicing Change Variants rate 6 1.707 2.514 2.379 4.655E-14 7.112E-08 2.223E-01
Probably Damaging nscSNPs rate 7 10.103 15.472 15.602 1.136E-91 4.578E-69 3.853E-01
Possibly Damaging nscSNPs rate 8 5.991 7.744 8.233 7.313E-19 3.064E-21 6.111E-02
Protein motif damaging Variants rate 9 4.104 6.311 6.581 2.612E-39 3.043E-35 1.726E-01
TFBS Disrupting Variants rate 10 2.793 4.173 4.063 7.493E-69 2.764E-42 1.785E-01
miRNA-BS Disrupting Variants rate 11 0.948 1.170 1.081 2.405E-03 7.715E-02 2.286E-01
ESE-BS Disrupting Variants rate 12 5.835 7.260 7.283 1.696E-13 2.840E-10 4.689E-01
ESS-BS Disrupting Variants rate 13 2.460 3.013 2.865 6.435E-06 3.539E-03 2.232E-01
Total Likely Functional Variant rate 14 23.718 34.906 35.436 8.999E-170 1.234E-132 2.128E-01

Populations z-test p-values

Frequencies of funct pop spec 
variants: Greater in non-Africans 

Highly significant AFR vs. non-AFR 



Variants that cause dysfunction 

Compensation 
 
 
 
Both gene homologs 
dysfunctional 

Diploidy and Compound Heterozygosity (CH) 



• Can sense be made of the effect of multiple genic variations without knowing phase? 
• Most studies simply tally the number of non-reference alleles at singular loci 
• Determining phase is not trivial via population/de novo assembly algorithms 

A
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X X

X X

E F E F

+

+
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=

Normal Function

Haploinsufficiency

Normal Function

Haploinsufficiency

Unique Phenotype

Maternal Homolog            Paternal Homolog Diplotypic Effect (Phenotype)

Tewhey et al. (2011) 



Tewhey et al. (2011) 

Copy Number Variations                                     ‘Unmasking’ via Deletions 

4 Gene Copies but 3 Different Scenarios 



Phasing for Assessing ‘Diplomics’ Phenomena 

Approaches to Resolving Phase 
 
• Sequencing parents/relatives 
• Population-based phasing (and imputation) 
• Assembly of sequencing reads 
• Separate chromosomes prior to sequencing 



NGS Assembly-Based Haplotyping and Phasing 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 

 

 

AAAAAAAAAAAAAAAAATTTTTTTTTTTTTTTTTTTTT 

TTTTTTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAAA 

Correct phase 

Switching Error 



Functional Variant Analysis of the Genomes of a Trio 

STSI-1 

STSI-1m  STSI-1f 

• Sequencing and variant calling by Complete Genomics, Inc. 
 

• In house phasing algorithms + functional annotations of all variants 
 

• Primary analyses: catalog instances of potential functional compound heterozygosity 

Individual Seq (Gb) SNVs Novel Ins Novel Del Novel
Child (STSI-1) 121.9 3163286 210730 145411 56028 156147 61544

Mother (STSI-1m) 137.2 3229588 216800 155150 59506 166060 64507
Father (STSI-1f) 138.4 3236815 216996 157779 60310 169006 65139

Combined - 4469443 419783 268714 125258 295595 135390

COMPREHENSIVE ANNOTATION OF AN ENTIRE HUMAN DIPLOID GENOME 
Ali Torkamani*, Vikas Bansal*, Ondrej Libiger, Phillip Pham, Ashley Van Zeeland, 

Guangfa Zhang, Ryan Tewhey, Eric J. Topol, Nicholas J. Schork (in review) 

Torkamani et al. (in review) 



Phasing and Analysis Approach 

Phasing algorithm: 
 
• Use Mendel’s laws to phase heterozygous variants 
 

• For triply heterozygous variants, leverage population phasing/neighboring variants 
 

• 4125865 phased SNVs (92%) and 348835 phased indels (87%) 
 

• Variants not in databases and de novo variants/sequencing errors can’t be phased 
 

After phasing all variants: 
 

1. Annotate positions of all variants (Human Genome hg18) 
2. Predict likely functional effect of variants using bioinfomatics pipeline 
3. Assign disease risk alleles from association study databases 
4. Explore regions of high heterozygosity/nucleotide content differences between 

homologous chromosomes 

Torkamani et al. (in review) 



Genes Harboring Likely Functional CH Sites 

Torkamani et al. (in review) 

exons 

splice sites 
TF binding 

site 
TF binding 

site 

X 
X 

53/389 X 
X 

71/184 139/290 

10/156 

X 
X 

X 
X 

coding + coding         promoter + regulatory 

promoter + coding          coding + splice variant 

• Substantial number of potentially functionally significant CH sites in genomes 
• RNA sequencing and eQTL studies are underway to assess these functionally 

Number of het sites 

Number of CH sites 



Nicholas Volker (PMID: 21173700) 

DNA Sequencing Clinical Success Stories: Idiopathic Diseases 

The Beery Twins 
(PMID: 21677200) 

• Idiopathic conditions: defy conventional diagnostic categories, treatment unresponsive 
 

• Sequencing the genomes of individuals with idiopathic conditions could shed light on origins 
 

• Variants could be inherited in complex ways (e.g., compound heterozygotes) or be de novo 
 

• Finding the pathogenic or causative variants among the many ‘candidates’ is problematic 
 

• Strategies based on WGS, the use of reference genomes and bioinformatics tools exist 

Madsen siblings; Miller Syndrome 
(PMID: 20220176) 

Dr. James Lupski (CMT) 
(PMID: 20220177) 



‘Filtering’ Strategies: Reference Genomes + Bioinformatics 

…ACGCCGTCAGGGTCATAGTAGACTAGCTTGAGCTACCAAA… 
 
…ACGTCGTCAGGGTCATCGTAGACTAGCTAGAGCTAGCATA… 
…ACGTCGTCAGGCTCATAGTAGACTAGCTAGAGCTAGCATA… 
…ACGTCGTCAGGCTCATAGTAGACTAGCTAGAGCTAGCAAA… 
…ACGCCGTCAGGCTCATCGTAGACTAGCTAGAGCTAGCATA… 
…ACGTCGTCAGGCTCATAGTAGACTAGCTAGAGCTAGCATA… 
…ACGTCGTCAGGCTCATAGTAGACTAGCTAGAGCTAGCATA… 
…ACGCCGTCAGGCTCATCGTAGACTAGCTAGAGCTACCATA… 
…ACGTCGTCAGGCTCATCGTAGACTAGCTAGAGCTAGCATA… 
…ACGCCGTCAGGCTCATAGTAGACTAGCTAGAGCTAGCATA… 
…ACGTCGTCAGGCTCATCGTAGACTAGCTAGAGCTAGCAAA… 
…ACGTCGTCAGGCTCATCGTAGACTAGCTAGAGCTACCATA… 

Novel Variant in Functional Element 
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Two reasonable(?) assumptions: 
 
1. The pathogenic variant(s) is ‘novel’ (i.e., unique to the patient) 
2. The effect of the variant is pronounced enough to be characterized bioinformatically 

• What bioinformatic tools should be used for functionality? Does it make a difference? 
• What reference populations for determining novelty should be used? Does it matter? 



   Filters to Identify Causative Variants in Single Genomes 

• Determining the novelty of a variant requires ancestry-appropriate reference genomes… 
 

• This has implications for clinical studies as well as rare variant, GWAS-seq studies 

• We ‘implanted’ known disease causative variants with Polyphen2 score > 0.8 in genomes 
 

• Determined the observed number of novel functional variants with different reference 



Genetic Networks and Network Analysis 

How can one leverage network information in drug matching algorithms? 



Degree Centrality 
• Number of nodes connected to a given node 
• How well a node is connected; direct influence 

Network Centrality Measures 

Closeness Centrality 
• Sum of shortest distance (path) to all other nodes 
• Inverse measure of centrality 

Betweenness Centrality 
• Frequency that node=shortest path between 2 nodes  
• Control of communication between other nodes 

Many other measures of node’s importance in a network… 



• What source of pathway definitions?: e.g., KEGG vs. wikipathway 
• How broad should Protein-Protein Interaction (PPI) networks be? 

Whither Pathway Information? 

MAPK: KEGG                                 MAPK: WIKIPATHWAY 



PPI Sub-Network of MAPK Pathway: 
High-ranking central nodes 

Network diameter: 3;  
characteristic path length: 1.73  

Network diameter: 3;  
characteristic path length: 1.69  

KEGG                                              WIKIPATHWAY 



Degree Centrality 

Spectral Gap 
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