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Genome Wide Association Studies (GWAS): Common SNPs
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Rising to the top. In a genome-wide association study for type 2 diabetes, 386,731 genetic markers,
shown here by chromosome, pop up. Those above the higher line appeared to be significantly
associated with disease,



Published Genome-Wide Associations through 6/2012

(GWAS hits at p<5x10-8for 17 trait categories; Individual Chromosomal Locations)

Published GWA Reports, 2005 — 6/2012
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Digestive system disease
Cardiovascular disease

Metabolic disease

Immune system disease

Mervous system disease

Liver enzyme measurement

Lipid or lipoprotein measurement
Inflammatory marker measurement
Hematological measurement
Body measurement
Cardiovascular measurement
Other measurement

Response to drug

Biolegical process

Cancer
Other disease
Other trait

NHGRI GWA Catalog (www.genome.gov/GWAStudies)
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http://www.genome.gov/GWAStudies

The Limitations of Standard GWA Study Paradigms

« GWAS focusing on common variations
have resulted in unequivocal statistical
associations

» Associated genes have, on average,
very small effects on disease (Odds
Ratios of ~1.2-1.4)

» Collectively, the variations typically
explain a very small fraction of the
disease burden in the population (e.g., 4-
10%)

« How can contemporary GWA study
paradigms be extended, complemented
or replaced to advance the identification
and characterization of genetic factors
contributing to disease? Detect Rare
variations?
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‘Collapsing’ Rare Variations Based on Functional ‘Features’

Rare Variants
Common Variant

il
ACGTAGCTAG ATACCAGAG
.ACG[TTCTAGAGATCGATACC

..ACGTAGCTAGAGATCGA o
..ACGTAGCTAGAGA ATACCAGAGAGCPVATATCACTCGAGATTCGAGATCAGGATCGAG...
..ACGTAGCTAGGGATCGATACCTGAGAGZTATATCACTCGAGATYCGAGATCAGGATCGAG..
.ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...
..ACGTAGCTAGAGATCGATACCTZAGAGCTATATCACTCG TGATTCRAGATCAGGATCGAG..
.ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...

Genomic Feature (e.g., Binding Site)
=

..ACGTAGCTAGGGATCGATACCAGAGAGCTATATCACTCGAGATTCGA TCAGGATCGAG... )

..ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATEAGGATCGAG...
. ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG..
. ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG..
. ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG..
.. ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGAATCGAG..
. ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG... > Control Sequences
.. ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG..
ACFTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG..
..C¢GTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG..

.ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG... J

Basic Intuition: Compare the Collective Frequency of Variants Between, e.g., Groups



Functional Annotations: Bioinformatic Predictions
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Fiqure 11.2 The anatomy of a gene. This figure illustrates some of the key requlatory regions
that control the transcription, splicing and post-transcriptional processing of genes and tran-
scripts. Polymorphisms in these regions should be investigated for functional effects

Plumpton and Barnes. “Predictive Functional Analysis of Polymorphisms: An Overview.” in Bioinformatics for Geneticists. Wiley, 2007

We have developed methodology and tools for comprehensive bioinformatic WGS annotation
(Schork, Torkamani and colleagues: Bioinformatics 2008, 2009; Cancer Research (2009), Nat Gen Rev (2010), Genomics (2011))




Defined Region(s) vs. Moving Window Analyses

.ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...
.ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGTGATCAGGATCGAG...
.ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...
.ACGTAGCTAGGGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...
..ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...
.ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...
.ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...

.ACGTAGCTAGGGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...

.ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...
.ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...
.ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...
.ACGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGAATCGAG...
.ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...
.ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...
..CCGTAGCTAGAGATCGATACCAGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...

.ACGTAGCTAGAGATCGATACCTGAGAGCTATATCACTCGAGATTCGAGATCAGGATCGAG...

> Case Sequences

> Control Sequences




Multiple ‘Driver’ Tumor Mutations in the Same Gene/Protein

Torkamani, Verkhivker, Schork. Cancer Letters. 2008

Table 1

Alist of recent studies attempting to identity mutations that drive tumaorigenesis,

Study Genes) studied Cancer s) studied Methodology Main result(s )

Bignell et al (2006) | 55] Kinases Testicular Frequency analysis Identified a few somatbic variants
Sjoblom et al. (2006) | 56| Kinases Breast and oolorectal Frequency analysis Estimated driver frequencies
Thomas et al. (2007) |58] Oncogenes Various Frequency analysis Oncogene Frequendes assessed
Greenman et al. (2007 ) | 59] Kinases Varous Frequency analysis Estimated driver frequencies
Kaminker et al. {2007) Many {General method ) Machine learning Algorithm for identifying drivers
Wood et al. (2007 ) |61] Many Breast and oolorectal Frequency analysis Estimated oncogene frequencies
Frohlin et al {2007 [71] FLT3 AML Functional analysis Single gene driver frequenaes
Torkamani and Schork (2008 ) | 78] Kinases (General method ) Machine learning Algorithm for identibying drivers

Loriaux et al. (2008) |68
Tyner et al. (2008) |69
Tomasson et al (2008 ) | 70]
Chen et al. (2008) |72

Tyrosine kinases
Tyrosine kinases
Tyrosine kinases
EGFR

AML
CMML
AML
Lung

Functional analysis
Functional analysis
Functional analysis

Frequency analysis

Identhed funcoonal mutations
Identbied functonal mutations
Characterized mutual exclusivity
Characterized somatic “Doublets”

Neutral SNPs

Congenital Disease SNPs  Tumor SNPs

Deficit, Enrichment

Cancer
Research

Torkamani Schork. Cancer Research. 68; 2008



Collections of ‘Causally Associated’ Rare Germline Variants

Available online at www.sciencedirect.com Current Opinian in

Genetics
& Development

> ScienceDirect
ELSEVIER
Common vs. rare allele hypotheses for complex diseases

Nicholas J Schork, Sarah S Murray, Kelly A Frazer and Eric J Topol

Table 1

Recent sequencing studies linking multiple rare variations to a phenotype or disease.

Reference Gene Phenotype Results

[37] Mejentsev et al. IFIH1 Type 1 diabetes Multiple rare cSMNPs are more frequent in T10D
[38] Marini et al. MTHFR Folate response Multiple coding SNP effects are folate remedial
[39%] Ji et al. Salt handling genes Blood pressure Multiple coding SMNPs for individuals with low BP

[40] Azzopardi et al. APC Colorectal cancer Multiple variations among colorectal cancer
[41] Masson et al. CTRC Pancreatitis Multiple variations among pancreatitis patients
[42] Ma et al. Tol-ike receptors Tuberculosis (TB) Multiple coding variations influence TB

[43] Ahituv et al. 58 different genes Obesity Multiple variations among obese patients

[44] Romeo et al. AMNGPTL4 Elevated HDL Multiple variations among high HOL patients
[45] Kotowski et al. PCSKO Low LDL Frequent nonsense mutations among low LDL
[46] Cohen et al.2005) PCSKS Heart disease Multiple sequence variations among HD patients
[47] Cohen et al. MPC1L1 Low LDL Multiple rare variants among low LOL patients
[48] Cohen et al. PCSKS Low LDL Frequent nonsense mutations among low LDL
[49] Cohen et al. ABCA1, APOA1, LCAT Low plasma HDL Coding SMPs differences for low HDL patients

» 1000 Genomes Project (www.1000genomes.orq)



http://www.1000genomes.org/

Whole Genome Sequencing Has Arrived...
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Figure 3 | Improvements in the rate of DNA sequencing over the past 30
years and into the future. From slab gels to capillary sequencing and
second-generation sequencing technologies, there has been a more than a
million-fold improvement in the rate of sequence generation over this time
scale.
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The Promise of Personalized Medicine

Imagine the day when you and your doctor sit down to review a
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.| your biology will enable your physician to inform you of your
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Multilocus Association Studies with DNA Sequencing Data

Genetic Epidemiology 21 (Suppl 1): S626-S631 (2001)
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Other Methods
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The ‘Anna Karenina’ or ‘Extreme Allelic Heterogeneity’
(EAH) Rare Variant Setting vs. Other Settings

Most studied: ‘Extreme Allelic Heterogeneity’ (EAH) setting. 'Happy families are all

alike; every unhappy family is unhappy in its own way.‘ Leo Tolstoy, Anna Karenina

Roach et al. Science (2010)
a
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Approaches for the Analysis of Collections of Rare Variants

Summary Statistics

» Leverages, e.g., weighted averages, sample diversity measures, sample
distances between groups, etc. at the group summary level

Sequence Similarity and Diversity Measures

« Compare the nucleotide content of an individual's sequence against all other
individuals and look for patterns among/between, e.g., cases and controls

Regression Methods

* Phenotype is the dependent and individual variants, collections of variants, non-
genetic factors, and interaction terms as independent/predictor variable

Phase-Dependent Models (Compound Heterozygosity)

* Requires phase information and contrasting cis/trans effect models.

Bansal, Libiger, Torkamani, Schork. Nature Reviews Genetics. November 2010



Sanofi/Scripps Study: Gene Sequence Variation and Obesity

» 298 Individuals (148 morbidly obese; 150 controls)

» Two endocannabinoid genes sequenced using lllumina GA (FAAH; MGLL)

» Standard assembly for SNP identification (60x coverage; 3 reads per variant)
» 242 variants identified in FAAH (many novel and rare): 31 kb of sequence

» 1232 variants identified in MGLL (many novel and rare): 157 kb of sequence

* FAAH: located on chromosome 1p33, known to hydrolize anandamide (AEA),
and other fatty acid amides

« MGLL: located on chromosome 3q21.3, a presynaptic enzyme that hydrolyzes
2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid found in the
brain

Harismendy et al. Genome Biol. 2010 Nov 30;11(11):R118. PMID: 21118518
Bansal et al. Pac Symp Biocomput. 2011:76-87. PMID: 21121035



Approach
Simple CAST*

Differentiation

Nucleotide
diversity

Combine
single-locus tests

T-square
distance™

Frequency
weighting®

Variable weight*
Haplotype
frequency®

Sequence

diversity
MDMR
Similarity
regression
IBD sharing®

Subset selection

Linear regression*

Adaptive sums*
Logic regression™
Ridge regression
LASS0*

LASSO or Ridge*

Category Description

Sum
Sum
Sum
Sum
Sum
Sum
Sum
Sum
Dis

Dis

Dis

Dis
Dis

Reg
Reg

Reg
Reg
Reg

Reg

Collapse variants and test for overall frequency
differences

Assess the overall genetic distance between groups
over multiple loci

Compare nucleotide diversity in a genomic region
between groups

Combine test statistics at each locus through,
for example, Fisher's p-value method

Compute the distance between allele frequency
profiles

Compute individual carrier status scores weighted
by allele frequency

Find optimal weights of variants and leverage
functional impact

Omnibus test of haplotype frequency differences
between groups

Compare individual sequence differences across
groups

Directly relate a sequence dissimilarity matrix to
phenotypic variation

Non-matrix-based regression of phenotype on
sequence similarity

Evaluate IBD sharing within families

|dentify the minimal set of variants that maximally
discriminate groups of phenotypes

Regress phenotype on collapsed sets of variants

|dentify optimal subset of variants as predictors
considering the direction of the effect

Optimize collapsed sets of predictors in regression
framework

L2-regularized regression to accommodate variant
correlations

L1-regularized regression to accommodate large
number of variants

Grouped parameter L1- and L2-reqularized regression

QrL?

Stratified

Stratified

Stratified

Yes

Stratified

Stratified

Yes

Stratified

Stratified

Yes

Yes

Yes

Stratified

Yes
Yes

Yes

Yes

Yes

Yes

Covariate

accomodation®

Stratified

Stratified

Stratified

Stratified

Stratified

Stratified

Stratified

Stratified

Stratified

Direct

Direct

Stratified

Stratified

Direct

Direct

Direct

Direct

Direct

Direct

Bansal et al. Nature Reviews: Genetics (2010)

Computational Refs
burden

Trivial 28,30
Trivial 50
Trivial 47
Trivial 42
Moderate 28
Trivial 34
Moderate 35
Moderate 43,44
Trivial 65
Intensive 20,54
Moderate 56,57
Moderate 69,70
Intensive 66
Trivial 33
Intensive 40
Intensive 67
Moderate 74
Moderate 75
Moderate 76



Multiple Variant Effects May Shaping Gene Function

 Extreme Heterogeneity (Li and Leal 2008)

e Additive/Cumulative (Morris and Zeggini 2010)
 Synergy/Combinations (Wessel and Schork 2006; Schork et al. 2008)
« Opposing Rare Allele Effects (Han and Pan 2010)

e Common + Rare (Madsen and Browning 2009; Han and Pan 2010)

« Compound Heterozygosity (?)

Table 2 | Example studies assessing the effect of combinations of unique gene-specific diplotypes on a complex phenotype

Gene Phenotype assessed Genetic basis Refs

ADRB?2 Response to asthma therapy Complex promoter and coding-region haplotypes at the ADRBZ locus alter receptor 72
expression

HG1 HGH expression Non-additivity of the effects of 16 HG1 SNPs with individual effects, depending on 73
haplotype context

FANCD2 Breast cancer If at least one copy of a specific FANCDZ haplotype is present, carriers are at fourfold risk 74

IL1B IL-1B activity Individual SNPs in the IL1B promoter have either an upregulatory or downregulatory 75
effect depending on haplotype context

PRKAG3 LDL cholesterol Homozygotes for specific alleles in a specific PRKAG3 diplotype exhibited the highest 76
LDL cholesterol of all the frequent diplotypes

ATM Non-small-cell lung cancer On the basis of haplotype and diplotype analyses, a specific diplotype at the ATM locus 77
confers risk

MDR1 Multiple myeloma Protective effects were identified in heterozygotes and homozygotes for a specific 78
diplotype at the MDR1 locus

NPAS3 Schizophrenia and bipolar disorder ~ Combinatorial action of haplotype pairs was associated with overall susceptibility 79

ADIPOQ Rosiglitazone response A specific diplotype at the ADIPOQ locus exhibited stronger association with enhanced 80

response than other diplotypes

HGH, human growth hormone; IL-1B, interleukin-1p; LDL, low-density lipoprotein. TeWhey et al 2011



Different Methods Applied to the MGLL Gene
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Set Method (Hoh and Ott 2003)

Omnibus Haplotype (Fallin et al. 2001)
Logic regression (Kooperberg et al. 2001)
Ridge regression (Malo et al. 2008)
Sequence similarity (Nievergelt et al. 2007)
Diversity (Jost 2007)

Distance Dispersion (Anderson 2006)
Subset selection (Bhatia et al. 2010)
Weighted average (Madsen et al. 2009)

Hotelling’s T-square (Li and Leal 2008)

===-%+2 Fisher’s exact, single locus test

Bansal et al. PSB 2011



Distance-Based Sequence Analysis for Associations:
Simple Nucleotide-Level Identity-By-State Similarity Matrix

9 Sequence Diversity/Similarity Measure Approach
DNA Sequence-Based
Phenotypic Association

" 12 3 4 E & 7 g % 10 11 12 1314 15 16 17 lg 1% 20
Analysis R } Vo
:L:l:glla:: '.‘l",jﬂﬂ.'-’-’-‘-' Jennifer Wessel,****+1 and D D D

Advances in Genelics, Vol. 60 1 | |'|

{ . |
) ’1 I J"x A .?'J'i}ll’m ok slll djjll.h.lu ad

9. DNA Sequence Associations 199

Table 9.1. Studies Suggesting That Multiple, Potential Interacting Variants Within a Gene or

Specified Genomic Region Influence Phenotypic Epression AT..C..T...G..-...C.. T.T...A..-==...G...6..T..GC. .. T... A ..m==..C..GCT. ... .. cl
A.C..C..T...5 A .. C.. T.G.. . A ARCT...C, .G T..62, .. C.. A& ..-——. .G,  GCTCGET c2
Gene In witro? Phenotype References A.T..C..T...G..= oL .G A VACT. . .G, AT, -2, QL G, mm=L 0L LG0T L L c3
ADRB2 Yi:s If:rml\chndilnforrcspnnsc D_n's«dlrfleetai.(?.UOOI G0, . C.. B R .. O LT, @ mem O B R m— DL R ——— . .. . GCTCETCGT Dl
DRD4 No Schizophrenia Nakajima et al. (2007)
NRG1 No® Schizophrenia and NRG1 Law et al. (2006) &.C..A..G...G6..A...T......T.T...G..2CT...G...G..A..-C...T...G.. . ARR. .C. . GCTCGTCGT D2
mRNA levels G C..A..T...G. .A. .. C.. LT G =L G T -2, T G L JRRR,L WO L GCTCGET. . D3
HTRZA Yes HTRZA gene expression Myers et al. (2007)
ENT1 Yes ENTT1 gene expression Myers et al. (2006)
CDA Yes CDA gene expression Fitzgerald et al. (2006)
PCSK9 No Lipoprotein levels Korowski et al. (2006)
NPCIL1 No Lipoprotein levels Cohen et al. (2006)
KRT1 Yes KRTT1 gene expression Tao et al. (2006)
GHI1 Yes GH1 gene expression/ Horan et al. (2003)
adult heighr
DAT1 Yes DATI gene expression Greenwood and Kelsoe (2003)
(SLCOA3)
APOE No Lipid levels Stengard et al. (2002)
SLCAA3 Yes Parkinson’s disease Kelada er al. (2005)
CHGA Yes Catecholamine Wen et al. (2004)
physiology

“Note that the study of the NRG1 gene involved computational assessments of the functionality Pan W RelatlonShlp between genomIC dIStanCG-based regreSSIon and
ofgene vartrions ather then b i studies ot Sipetstion sedes kernel machine regression for multi-marker association testing. Genet
Epidemiol. 2011 [Epub ahead of print]; PMID:21308765
« ‘Distance’ measure is important and may impact inferences...
» Weighting schemes can be used to leverage information about positions
* Nucleotide sharing assumes alignments are perfect and capture structural variations
» Nucleotide sharing does not consider multinucleotide variations as single variations
 Take a ‘window’ of the genome, analyze it, and move to a new window...



Relating Variation in Similarity to Outcomes: MDMR/GAMOVA

. A standard multivariate multiple regression
moael ror tnis siuation would be (20, 21)

Y=XB+e, [

where B i= an M = P matrix of regression coefficients and & is
an error term, often thought be distributed as a (multivariate)
normal vector. The least-squares solution for B is @ =
(X'X) 'X'Y, with the matrix of residual errors for the model
being

R=Y-¥=Y-X,=(l- HY, [21

where H = (X'X)"'X' and is the traditional “hat™ matrix.
Unfortunately, If N <= P, as is often the case with gene
expression and other genomic data types, then this model is
problematic. An alternative would consider how the M predictor
variables relate to the similarity or dissimilarity of the subjects
under study with respect to the P gene expression values as a
whole or a5 a series of unique subsets of the data.

LetIdbe an & = N distance matrix, whose i:]trn:nr:.,d,;_, reflect
the distance (or dissimilarity) of subjects i and j with respect to
the P genc expression values. For example, di could be calculated
as the Euclidean distance or as a function of the correlation
cocfficient (sec Forming the Distance Moetriv below), Let A =
oz = l[—‘.f‘m'ﬁ}. One can form Gower’s centered matrix G from
A by calculating

n={1—£n|':}.4(:—$|rj, [3]

where 1 is a N-dimensional column wector whose every element
is 1 and I'is an ¥ * & identity matrix. An appropriate F statistic
for assessing the relationship between the M predictor variables
and variation in the dissimilarities among the N subjects with
respect to the P variables i=

B r{HGH) /(M — 1)
T[T - H)G{I — H} /(N — M)"

[4]

Multivariate regression analysis of distance matrices
for testing associations between gene expression
patterns and related variables

Matthew A. Zapala* ard Hkchelas
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Generalized Genomic Distance-Based Regression Methodology
for Multilocus Association Analysis

Jennifer Wessal and Nicholas J. Schork

P Y —— ) PLOS

' Generalized Analysis of Molecular Variance

Caraling M. Neevergelt" %, Onerej Ubiger™ ™, Nicholas . Sehork' 3425
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few wedlchosen Jol, Mary stisdies in the fields of genetic and applicd L preduated on, or require, an

diversity of ehosen fou study, A number of sirategies have been

Moddarn genutics fesancens AV developed for assessing genetic background diversity. These srategies typially focus on genotype dita collected on

the iredividuals in the study, based cn a pared of DNA markers. Howeves, many of thise strateghes are sither rooted in
cluster analysis techniques, and hence suffer from problems inherent to the assigament of the biclegical and statistical
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GAMOVA based association analysis with sequence data
Wessel and Schork, AJHG (2006); Schork et al. Adv Gen (2008);

Ordered by BMI Ordered by similarity
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Similarity Approach (Synergy)



Diversity Methods: Summary Measures vs. Comparing
Individual Sequences

Molecular Ecology (2008) 17, 40154026 doi: 10.1111 /1.1365-294X.2008.03887.x

Ggr and its relatives do not measure differentiation

LOU JOST
Via Runtun, Bafios, Tungurahua, Ecuador

k (1/(1-4)

Figure B.2. Window-based association analysis for the MGLL gene assuming a
diversity statistic with different exponents based on the work of Jost (2007). The A
values used to construct the graphs are, from the bottom panel to the top panel: 0.2
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Summary Measure Approach

BlOMETRICS 62, 245-253 DOI: 10.1111/j.1541-0420.2005.00440 x
March 2006

Distance-Based Tests for Homogeneity of Multivariate Dispersions

Marti J. Anderson

Department of Statisties, University of Auckland, Private Bag 92019, Auckland, New Zealand
email: mja@stat.anckland ac.nz

M A . 8 PMW*‘\ <4
= : A

Sequence Diversity/Similarity Measure Approach



Multilocus Regression for Sequence-Based Associations

Intercept Collapsed Rare Gene X
(Average) Variants (‘Features’) Environment
Interaction
Common Genotypes Rare Variants

Phenotype =b, +b, g, +b,g, +...+b;g9; +b,,9,,, +... +b. g, +bk+1§k+1 +...+bc, +b,09, +bn‘g'1en +e

T

Covariate
Effect

Gene x Gene
Interaction

Problem 1: There will likely be many more ‘predictors’ than subjects
Problem 2: Collinearity between predictors (due to LD or by definition)

2

Solution?: Some form of regularization or shrinkage: @ a=wema{3" (n-e-Tam)|  subiscioSipi<e

Regression Method Approach (Stepwise, LASSO, Ridge, etc.)



Regression-Based Multilocus Association Analysis

Genetic Epidemiology 21 (Suppl 1): S626-S631 (2001)

Sequence Analysis using Logic
Regression
The Amerdcan Journal of Human Genetics 82, 1-11, February 2008

Charles Kooperberg It

Division of puic + ACCOMMOdating Linkage Disequilibrium |
Center, Seattle. Wein Genetic-AssoCiati pLos Genetics S July 2008 | Volume 4 | Issue 7

Nathalie Malo,"2 Ondrej Lib Simultaneous Anal' ORIGINAL PAPER .50 wsmoniomusaioost

RE‘SequenCing ASS‘ Genome analysis
Clive J. Hoggart™, John C. Whittak GENOMe-wide association analysis by lasso penalized logistic

regression
Tong Tong Wu', Yi Fang Chen?, Trevor Hastie®>, Eric Sobel* and Kenneth Lange®®

DFFJ(LH[HH] of Epidemiology and Biostatistics, University of Maryland, College Park, MD 20742, Z2Department of
Stat |::.t cs, “Department of Biostatistics, Stanford University, Stanford, CA 94305, 4Department of Human Genetics
and Demn ment of Biomathematics, University of California, Los Angeles, CA 80005

e s 80 (a) small number of large effects— subset selection does best here, the lasso not
Regresion Shrnkage and Seecton vis fhe Lasso quite as well and ridge regression does quite poorly;
T (b) small to moderate number of moderate-sized effects—the lasso does best,
e s ot i s e i, i s i followed by ridge regression and then subset selection;

residual sum of squares sul h]ec!l o the sum of the absolute value of the coefficients being less
than a constant. Because of the nature of this constraint it tends to produce some

sl Tt i (c) large number of small effects—ridge regression does best by a good margin,

ndge Tt produces i ble models like subset selection and exhibits the

st::mty ?f rldgc regressiol n. There is also an interesting relationship wath recent work in #
S e T followed by the lasso and then subset selection.

and tree-based models are briefly described.

* Problem: a researcher won't know a priori which situation represents the truth...



Genomic Features with Collapsed Variations

Table 2. P-values for association for each analysis method for specific sets of collapsed variations in the MGLL Gene

Different Procedures

FAAH
NS H3K27 TFBS FOX2 Amidase

# of variants 5 29 4 14 5

Dispersion (Dis) 0.59 0.05 0.77 0.99 0.61
Diversity (Div) 0.43 0.42 0.81 0.33 0.46
MDMR Similarity (Sim) 0.19 0.21 0.05 0.14 0.41
Li & Leal (LL) 0.60 0.03 0.60 1.00 0.50
Subset Selection (SS) 1.00 0.01 0.60 0.75 0.60
Madsen & Browning (MB) 1.00 0.01 0.33 1.00 0.75
Logic Regression (LR) 0.23 0.18 0.39 0.22 0.48
Ridge Regresssion (RR) 0.35 0.09 0.06 0.33 0.54
PLINK Haplotype (Phap) NA 0.92 NA 0.34 0.61
PLINK Set Analysis (Pset) 1.00 1.00 0.02 1.00 1.00

MGLL
NS H3K27 TFBS FOX2 Amidase

# of variants 9 100 11 3 0

Dispersion 0.28 0.99 0.02 0.72 NA
Diversity 0.77 0.65 0.73 0.64 NA
MDMR 0.81 0.07 0.67 0.29 NA
Li & Leal 1.00 1.00 1.00 0.75 NA
SubsetSelection 0.60 0.43 1.00 1.00 NA
Madsen & Browning 0.75 0.30 0.02 0.20 NA
Logic Regression 0.35 0.67 0.02 0.49 NA
Ridge Reg. 0.71 0.50 0.01 0.61 NA
PLINK Haplotype NA 0.81 0.07 NA NA
PLINK Set Analysis 1.00 0.43 0.05 1.00 NA

Bansal et al. PSB 2011



Simulation-based Comparison of Methods

Comparison of Statistical Tests for Disease
Association with Rare Variants

SAONLI Basu, WEI PaN

http://www.biostat.umn.edu/~weip/paper/RV2.pdf

Simulate a wide variety of settings:
with LD, with opposite effect
variants, with neutral variants, etc.

Fit a number of different methods

The Kernel Machine Regression
(KMR) which was shown to be
equivalent to GAMOVA/MDMR
similarity-based method was one of
the most consistently  best
performers

Table 4:

I':[I[[}il'i('?ll power for tests at nominal level o based on 1000 1'1']:]in'nlc‘.\

for a non-ideal case for 8 causal RVs with various association strengths OR =

(3,3,2,2,2,1/2,1/2,1/2) and a number of non-causal RVs, There is no LD among

the RVs.
a = 0.05 a = 0.01
Test # of neutral RVs # of neutral RVs
0 ! 8 16 32 0 ! s 16 32

UminP 607 32 A8] 117 346 318 250 227 204 142
Score 869772721 632 483 | 660 532 480 356 233
SsuU 895,835 815 774 .696 | .723 662 645 583 472
wSSU-P K61 776 T35 685 550 | 606 510 460 401 258
SSUw S6T 773 .T32 0 .633 0 501 | 661 550 45l 355 238
Sum 682 5660 465 365 LISTO O I | M8 257 172 101
KMR(Linear) | .897 .842 .824 .783 .707|.740 .678 .G667 .619 .495
KME(Quad) 893 835 815 781 G698 731 6RO .663 605 484
CMC(0.01) 703 669 670 G670 500 | .511 157 170 170 TaR]
CNIC 661 b 150 36 204 | 4061 3T .235 157 086
wSum 659 548 459 335 228 | 460 336G 236 158 .003
aSum-P .854 745 684 374 130 | 670 138 130 1] 207
Step-up B39 T67 724 640 527 | G52 564 518 13 285
Seqg-aSum 802 811 THT 671 528 | L7562  .620 532 438 273
SeqraSum-VS | 885 807  .T68 686G 545 | 720 623 56T 448 203
KBAC 907 813 .T63 642 436 | .T3T  .607 536 300 199
C-alpha-A B020 8260 802 THT 655 | 824 732 720 653 512
C-alpha-P 006 .844 823 .T7T5 .674 | 735 .673 .661 .612 .496
RBT S100 659 603 482 301 | 590 429 3560 250 125




Additional Issues with Rare Variant Analysis

» Sequencing and Genotyping Errors

* Phasing and Diplotypic Effects

o Stratification

» The Use of In Silico Controls (e.g., 1000 Genomes Data)
« Moving Window vs. Annotation-Based Analyses

e Imputation

» Multiple Comparisons

* Properties of Methods in Different Scenarios!



Interpreting Genetic Variation is THE Issue...

Mardis Genome Medicine 2010, 2:84

http://genomemedicine.com/content/2/11/84 Genome Medicine

MUsINGS
The $1,000 genome, the $100,000 analysis?

Elaine R Mardis*

The $1,000 Genome, The $1M Interpretation

Dr. Kevin Davies

Dr. Kevin Davies is the Editor in Chiefl al Blo-IT World, He will be presenting The &1,000
Genome, The 51,000,000 Interpratalion.

Tha revohtion in INA sacuisncing

2011 marks the 10th annfversary of the publication of the first grafl of the Human Genome Projed, iz alseo
aboul ten years ago that researchers colned the catchphrase “the $1,000 genome® as the ambltious targei o
fully realize the fruts of human genomic research. Remarkably, that goal is aimost a reality

Companies are already sequencing and annotating complete human genomes for less than 510,000 and a
growing number of examples of whole-genome (ar exame) sequencing In the clinic, parbculary In pasdiatrics
and ancology. have been published

These suggest a bright future for genamic medicine while accentuating the downstream informatics
challenges, or what some refer to as “the 51-millian interpretation

CopenhagenGenomics 02/22/2011



Functional Annotations: Bioinformatic Predictions
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Fiqure 11.2 The anatomy of a gene. This figure illustrates some of the key requlatory regions
that control the transcription, splicing and post-transcriptional processing of genes and tran-
scripts. Polymorphisms in these regions should be investigated for functional effects

Plumpton and Barnes. “Predictive Functional Analysis of Polymorphisms: An Overview.” in Bioinformatics for Geneticists. Wiley, 2007

We have developed methodology and tools for comprehensive bioinformatic WGS annot
(Schork, Torkamani and colleagues: Bioinformatics 2008, 2009; Cancer Research (2009), Nat Gen Rev (2010), Genomics (2011))




Functional Annotations: The Limits of Conservation
Torkamani, Kannan, Taylor, Schork. PNAS 105:9011-9016; 2008

Positions (residues/amino acids) of ~1000 disease causing variants in kinase proteins
contrasted with the positions of ~1000 kinase variants not known to cause disease

' Torkamani, Schork . voersere
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Accurate prediction of deleterious protein kinase polymorphisms
Ali Torkamani' and Nicholas J. Schork®*

* Review: Lahiry, Torkamani, Schork, Hegele. Nature Reviews Genetics 11; 2010
» Cancer Predictions: Torkamani, Schork. Cancer Research 68; 2008



Functional Annotations: Non-Coding Regions
Torkamani and Schork. Bioinformatics 24(16):1787-92; 2008

ENCODE features of the positions of 102 known disease-causing variants contrasted
with the positions of 1049 non-disease-causing
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Some features non-assay dependent; e.g., proximity to a TF start or end site



Functional Predictions of Variants in Public Databases

Variant Types CGI 69 |1000 Genomes| dbSNP (130) HGM
Total number of variants: 7300345 12052647 7463633 48836
Total SNPs: 3721410 10462071 3803614 48836
Total Insertions: 1381717 590109 2116683 0
Total Deletions: 1534599 1000467 1144309 0
Total rearrangements: 662619 0] 399027 0]
Nonsense SNPs: 429 1267 2506 10544
Frameshift Structural Variants: 3716 4911 18127 0
Insertions: 1675 3348 10552 0
Deletions: 1636 1563 7053 0]
Rearrangements: 405 0] 522 0]
Splicing Change Variants: 3021 1630 3833 118
Probably Damaging nscSNPs: 6202 20614 24893 28441
Possibly Damaging nscSNPs: 3061 10130 12189 4145
Protein motif damaging Variants: 4215 8773 20550 21436
TFBS Disrupting Variants: 5274 2749 3590 1
MIiRNA-BS Disrupting Variants: 555 1412 1233 75
ESE-BS Disrupting Variants: 3917 8177 11410 4738
ESS-BS Disrupting Variants: 2057 3168 4507 1357
Total Likely Functional Variants: 26775 49890 75983 44412
Rate of Likely Functional Variants: 0.004 0.004 0.010 0.909




Tools for In Silico Functional Prediction of Variants

« Model actual biophysical processes (e.g., protein structure, TF binding)

« Build classifiers using sequence information about the variants

Table 3
Recent individual whole genome sequencing studies with variant annotations.

Individual Reference Platform Annotations
JC Venter Venter (2007) [92]: Levy et Sanger Disease, traits,
al [2007) [15] SEqUENCIng ANCestry
Genomics 98 (2011) 233-241 5. Quake Ashley et al. (2010) [93] Helicos Disease, traits,
ancest '
Contents lists available at SeienceDirect .! Family with Roach et al. {2010]) [95] Complete Specific disease
EADAs Miller Genomics, Inc. i
ier ANOMKS, NC, mutations
Genomics I syndrome
_‘_: J. Lupski Lupski et al (2010) [94] SOLID Specific disease
jaurnal homepage: www.elsevier.com/lacate/ygena B3 mutations
NA19240 Moore et al. (2011} [11] S0LID Disease, traits,
. ancestry
Review NA18507 Moore et al. (2011)[11] SOLID; Illumina  Disease, traits,
Annotating individual human genomes ) ) ancestry
Anonymaous Moore et al, (20011} [11] Mlumina Disease, traits,
Ali Torkamani *¢, Ashley A. Scott-Van Zeeland ?, Eric J. Topol *<, Nicholas J. Schork *¢* Chinese Asian ancestry
; Anonymaous Moore et al, (20011} [11] Mlumina Disease, traits,
N Korean Asian AlLesiry
sperimentaf Medcne. The Scripps Researd sttt LA J. Watson Moore etal. (2011)[11]  Roche 454 Disease. traits.
ancest '
NADT022 Moore et al. (2011)[11] Complete Disease, traits,
b FNOMIcs ancest '
Table 1 NA12878 Moore et al. (2011} [11] !:;u..n ' |)i:-.m-. traits,
Example tools for human variant annotations. ancestry
Tool Website/reference Purpose/theme
UCSC genome browser http://www.genome.ucsc.edu/ Position-specific functional organization of the genome
dbSNP http://www.ncbi.nlm.nih.gov/projects/SNP/ Catalog variants with population-genetic annotations
OMIM http://www.ncbi.nlm.nih.gov/omim Catalog known disease-causing mutations
HapMap http://hapmap.ncbi.nlm.nih.gov/ Catalog variants with population-genetic annotations
COSMIC http://www.sanger.ac.uk/perl/genetics/CGP/cosmic Catalog of somatic mutations from tumor sequencing
TAMAL http://neoref.ils.unc.edu/tamal/ Provides functional and population-genetic annotations

Variant analyzer http://www.svaproject.org/ Provides functional annotations

PharmGKB

HGDP selection browser
Association database
SeattleSeq

Gene ontology

KEGG pathways

DAVID

UniProt

Transfac

Genenetwork eQTL website

http://www.pharmgkb.org;
http://hgdp.uchicago.edu/cgi-bin/gbrowse/HGDP/
www.genome.gov/gwastudies

http://gvs.gs.washington.edu/SeattleSeqAnnotation/

http://www.geneontology.org/
http://www.genome.jp/kegg/pathway.html
http://david.abcc.ncifcrf.gov/
http://www.uniprot.org/
http://www.biobase-international.com
www.genenetwork.org

Pharmacogenetics variant annotations

Browser for assessing signs of selection in the human genome

Results of genome wide association studies (GWAS)
Variant annotation

Biological, molecular and cellular annotations
Pathway analysis

Multiple annotations

Protein elements

Transcription factor databases

eQTL database

Statistical RANKING algorithms are need to prioritize variants in a study
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COMPARING THE UNCOMPARABLE

The rarer a genetic variant is within a population, the less likely it is to be found in
all ethnic groups. One hundred people were sampled from each population.

- Europeans® - Europeans&ChineseT - European & Africant

5 80

40

20

Degree to which variants are shared
between populations (%)

- 9:?

Genomics for the worl

Medical genomics has focused almost entirely on those of European descent. Other compared with Utah sample § Yoruba individuals from |Ibadan, Nigeria, compared with Utah sample.
ethnic groups must be studied to ensure that more people benefit, say
Carlos D. Bustamante, Esteban Gonzilez Burchard and Francisco M. De La Vega.

0

Rare variants (1%) Common variants (15%)

Frequency of variants
*Comparison of individuals of European descent in Utah and in Tuseany, ltaly. + Han Chinese individuals from Beijing

Example Issues:
« Determining individual ancestry or locus/allele-specific ancestry
 Unmatched (based on ancestry) cases and controls in a GWAS-seq = false positives

» Reference panel for determining the ‘novelty’ of a variant involves different ancestry



Population-Level Phenomena and Global Diversity

Africa

» greater diversity
» selection has washed away
some older deleterious

alleles
* less homozygosity for older
deleterious alleles EUFHTTJCPE
AA
Middle East

* only migrant genotypes
represented
» early bottleneck created

mc

o TC
Europe AFRICA cr
AC
* only migrant genotypes GT
represented

* not enough time for
selection to wash away
deleterious genotypes

* homozygosity for
deleterious alleles is greater

Lohmueller et al. Nature. 2008 451:994-7



Available Whole Genome Sequences for Diversity Studies

ORIGINAL RESEARCH ARTICLE
published: 01 Mowamber 2012

doi: 10,3385 gana 7012 00211

Clinical implications of human population differences in
genome-wide rates of functional genotypes

Ali Torkamani™#, Phillip Pham'2, Ondrej Libiger ™, \ikas Bansal ™, Guangfa Zhang ™,
Ashley A. Scott-Van Zeeland ™, Ryan Tewhey ™, Eric J. Topol ¥+ and Nicholas J. Schork ™3 #

" The Scnpps Tanshtional Soence. La Jola, G4, LSA
? Scnpps Health, La Jolla, G4, USA
a Degartmeant of Molecular and Exparimantal Medicine, The Scripps Aesesrch instivte, La Jbila, CA, U3

1. Identify all derived (i.e., non-chimp genome) alleles in each genome (30,000,000+)
2. Functionally characterize all variants (coding and non-coding) via bioinformatics analysis
3. Compare total number and rates per genome of functional variants across categories

4. Address the question of whether functional genomic diversity plagues “filtering’ strategy


http://www.clker.com/clipart-2333.html
http://www.clker.com/clipart-2333.html

52 Unrelated Individual Whole Genome Variants (CGl)
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Genome Wide Derived (non<Chimp, PanTro2) Alleles
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Historical bottlenecks, migrations, founder effects, random inbreeding, lack of time for selective pressure to
operate, etc. have left an imprint on contemporary global standing variation and homozygosity in non-African
populations on a WGS functional variant basis (extends the work of Bustamante et al.)



Population Specific Alleles (Unique to Each Population)

Populations z-test p-values

Variant Type Label AFR EUR ASN AFR vs EUR AFR vs ASN EUR vs ASN
Total number of variants: 7614850 2024886 1294731

Nonsense SNPs rate 1 0.500 0.840 0.842 6.931E-09  6.329E-07 4.910E-01
Frameshift Structural Variants rate 2 1.663 3.008 2.989 1.597E-34  6.239E-25  4.621E-01
Frameshift Insertion rate 3 0.657 1.274 1.383 6.368E-19  1.089E-18  2.006E-01
Frameshift Deletion rate 4 0.879 1.417 1.352 3.877E-12  1.584E-07 3.102E-01
Frameshift Rearrangement rate 5 0.127 0.316 0.255 2.614E-09  2.228E-04  1.572E-01
Splicing Change Variants rate 6 1.707 2.514 2.379 4.655E-14  7.112E-08  2.223E-01
Probably Damaging nscSNPs rate 7 10.103 15.472 15.602 1.136E-91  4.578E-69  3.853E-01
Possibly Damaging nscSNPs rate 8 5.991 7.744 8.233 7.313E-19  3.064E-21  6.111E-02
Protein motif damaging Variants rate 9 4.104 6.311 6.581 2.612E-39  3.043E-35  1.726E-01
TFBS Disrupting Variants rate 10 2.793 4173 4.063 7.493E-69  2.764E-42  1.785E-01
miRNA-BS Disrupting Variants rate 11 0.948 1.170 1.081 2.405E-03  7.715E-02  2.286E-01
ESE-BS Disrupting Variants rate 12 5.835 7.260 7.283 1.696E-13  2.840E-10 4.689E-01
ESS-BS Disrupting Variants rate 13 2.460 3.013 2.865 6.435E-06  3.539E-03  2.232E-01
Total Likely Functional Variant rate 14 23.718 34.906 35.436 8.999E-170 1.234E-132  2.128E-01

Frequencies

of funct pop
variants: Greater in non-Africans

spec

Highly significant AFR vs. non-AFR

The rate of novel functional variants (not just homozygous) is significantly higher in non-Africans

The rate is uniformly higher across ALL functional classes, not just ns cSNPs

Selection has had less time to ‘purifiy’ the European and Asian population (i.e., replicated Lohmuller et al.)




Diploidy and Compound Heterozygosity (CH)

Variants that cause dysfunction

Heterozygosity

..ATCGAGCT/CAGCGCGATAGCG/ACTAGCAT...

.ATCGAGCTAGCGCGATAGCGCTAGCAT... Materna
Compensation LATCGAGCCAGCGCGATAGCGCTAGCAT...  paternal

or

Both gene homologs AT CGAGCCAGCGCGATAGCGCTAGCAT... Matemal
dysfunctional ..ATCGAGCTAGCGCGATAGCGCTAGCAT... paternal

Table 1| Example clinical conditions and disorders influenced by compound heterozygosity in single genes

Disease Gene names Mutations implicated in compound heterozygosity

Blistering skin COL7A1 G2316R,G2287R

Cerebral palsy PROC N2I,5181R

CMT SH3TC2 KARS Y169H, R954X, L133H, Y1735fsX7

Deafness GjB2 Additive effect of multiple reported recessive and dominant mutations

Haemachromatosis HFE H63D, 2282Y

Mediterranean fever MEFV E140Q, M6941. M694I alone is associated with a mild phenotype

Miller syndrome DHODH G152R, GZ202A

Faraganglioma SDHB V110F and splice donor c. 200 + 7A > G

Hyperphenylalaninaemia PAH Multiple PAH variants explained non-PKU hyperphenylalaninaemia cases when
acquired as compound heterozygote

FBPase deficiency FBP1 G1645, 838AT

Ataxia-telangiectasia ATM Attenuated phenotype: D2625E, A2626P and splice site c.496+5 G>A

Glycogen storage type || GAA RE00C and splice site c.546G>T. Splice variant has reduced expression

Chondrodysplasias DTDST T266l, 340AV

Turcot’s syndrome PMS2 1221AG, 2361ACTTC

CMT, Charcot-Marie—Tooth neuropathy; FBPase, fructose-1,6-bisphosphatase; PAH, phenylalanine hydroxylase.

Refs
59
60

9,61
62
63
64

65
66

67
68
69
70
71

Nature Reviews Genetics | AOF, published online 8 February 2011; ¢

OPINION

The importance of phase information
for human genomics
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Nature Reviews Genetics | AOP, published online 8 February 2011; «
OPINION

The importance of phase information
for human genomics

Ryan Tewhey, Vikas Bansal, Ali Torkamani, Eric J. Topol and Nicholas J. Schork

« Can sense be made of the effect of multiple genic variations without knowing phase?
» Most studies simply tally the number of non-reference alleles at singular loci
» Determining phase is not trivial via population/de novo assembly algorithms

Maternal Homolog Paternal Homolog Diplotypic Effect (Phenotype)
Aa Variant with functional effect
Wild-type expression Reduced expression
Exons
+ Normal Function
Promoter | i i
TS e RNA el L Haploinsufficiency
mmmin with
Wild-type amino-acid

protein change

Normal Function

{ Haploinsufficiency

. Unique Phenotype
Tewhey et al. (2011)




Uncovering the roles of rare
variants in common disease through
whole-genome sequencing

4 Gene Copies but 3 Different Scenarios et it and a8 Goldsen ~OTORE T TTONE STo TS
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Copy Number Variations ‘Unmasking’ via Deletions

Tewhey et al. (2011)



Phasing for Assessing ‘Diplomics’ Phenomena

Approaches to Resolving Phase

» Sequencing parents/relatives

» Population-based phasing (and imputation)
» Assembly of sequencing reads

» Separate chromosomes prior to sequencing

Microfluidic device
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The next phase in human genetics

Vikas Bansal, Ryan Tewhey, Eric J. Topol & Nicholas J. Schork

Experimental haplotyping of whole genomes is now feasible, enabling new studies aimed at linking sequence
variation to human phenotypes and disease susceptibility.”

NATURE BIOTECHNOLOGY VOLUME 29 NUMBER 1 JANUARY 2011



NGS Assembly-Based Haplotyping and Phasing

HapCUT: An Efficient and Accurate Algorithm for the
Haplotype Assembly Problem

Vikas Bansal!, Vineet Bafna,!

====ACTCAC-===~ GTATGGTGC--——= ACAGTCTT—=——- CTGAAGAT---AGCATTA-----
====ACGCAC-==== GTATCGTGC--——= ACACTCTT—=——~ CTGATGAT---AGCCTTA-----
Sequencing

ACTCAC----- GTATGGTG

ACGCAC-===- GTATCGTGC
TATCGIGC----- ACACTCT
ACTCAC-=====m——mmm e e e ACAGTCT
ACGCA======m e e e e e e ———— AGCGTTA
GAAGAT---AGCATT
Haplotype
Assembly
----- E o L . b
————e— Commmmmmmee Commmmmmm e Temmmmm——— G-

Correct phase
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Switching Error
AAAAAAAAAAAAAAAAATTTTTTTTTTITTITTITTTTTTT

[TTTTTTTTTTTTTTTTTTTTAAAAAAAAAAAAAAAAA

350 4
300
250
= 2,5 and 10kb mate-pairs
= 10kb mate-pairs
2 2004 ——— 5kb mate-pairs
= = 7 kb mate-pairs
s |\ L | 10kb reads
K T s B 5kb reads
= 150 ———2kbreads
100 |
50
0 T T T T
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Sequence coverage

Figure 3 | Phase reconstruction using mate-pair information. Simulated 100 bp mate-pair read
coverage of various depths (sequence (fold) coverage, x-axis) for chromosome 1 of a Yoruban indi-
vidual. All simulations were done using SNP calls (for chromosome 1) for the Yoruban individual
NA19240, obtained from the 1000 Genomes project (released December 2008). Paired-end reads
were simulated with the starting position of one read, chosen consistently at random on the chro-
mosome, and the insert length sampled from a normal distribution with a given mean insert length
(2,5 0r 10kb) and standard deviation equal to 10% of the mean. For each simulation experiment, we
constructed a graph with nodes corresponding to the heterozygous SNPs and edges corresponding
to reads that cover multiple variants. The N50 was calculated using the number of variants in each
connected component of this graph that correspond to the phased haplotype blocks. The vN50 is
defined as the point at which half of the heterozygous loci of the chromosome are contained in
contigs with the vN50 or greater number of variants. Mate-pair libraries outperform reads of the
same length because the size distribution of the insert consists of lengths greater than 10 kb, allow-
ing for longer connections than are possible with single reads alone. The software used in the simu-
lation studies is available from the Polymorphism Research Laboratory (see Further information).

The importance of phase information
for human genomics

Ryan Tewhey, Vikas Bansal, Ali Torkamani, Eric J. Topol and Nicholas J. Schork

NATURE REVIEWS | GENETICS



Functional Variant Analysis of the Genomes of a Trio

STSI-1m STSI-1f

COMPREHENSIVE ANNOTATION OF AN ENTIRE HUMAN DIPLOID GENOME
Ali Torkamani*, Vikas Bansal*, Ondrej Libiger, Phillip Pham, Ashley Van Zeeland,

Guangfa Zhang, Ryan Tewhey, Eric J. Topol, Nicholas J. Schork (in review)

STSI-1
Individual Seq (Gb)| SNVs Novel Ins Novel Del Novel
Child (STSIF) 1219 |[3163286 210730 | 145411 56028 | 156147 61544
Mother (STSI1m) | 137.2 |[3229588 216800 | 155150 59506 | 166060 64507
Father (STSI-1f) 138.4 |[3236815 216996 | 157779 60310 |169006 65139
Combined - 4469443 419783 | 268714 125258 | 295595 135390

« Sequencing and variant calling by Complete Genomics, Inc.

* In house phasing algorithms + functional annotations of all variants

* Primary analyses: catalog instances of potential functional compound heterozygosity

Torkamani et al. (in review)



Phasing and Analysis Approach

Phasing algorithm:

» Use Mendel’'s laws to phase heterozygous variants

* For triply heterozygous variants, leverage population phasing/neighboring variants
» 4125865 phased SNVs (92%) and 348835 phased indels (87%)

 Variants not in databases and de novo variants/sequencing errors can’t be phased
After phasing all variants:

Annotate positions of all variants (Human Genome hg18)

Predict likely functional effect of variants using bioinfomatics pipeline

Assign disease risk alleles from association study databases

Explore regions of high heterozygosity/nucleotide content differences between
homologous chromosomes

W

Torkamani et al. (in review)



Genes Harboring Likely Functional CH Sites

exons

- me -

TF bi.nding \/ TF binding
site splice sites site
- = - - -
71/184 X
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coding + coding promoter + regulatory

) *"'53/389 - e
-X—=-n—8 - - e -

promoter + coding coding + splice variant

Number of het sites

/

139/290

\

Number of CH sites

10/156

Substantial number of potentially functionally significant CH sites in genomes
RNA sequencing and eQTL studies are underway to assess these functionally

Torkamani et al. (in review)



DNA Sequencing Clinical Success Stories: Idiopathic Diseases

- —

Nicholas Volker (PMID: 21173700)

] Dr. James Lupski (CMT)
Madsen siblings; Miller Syndrome (PMID: 20220177)
The Beery Twins (PMID: 20220176)
(PMID: 21677200)

e |diopathic conditions: defy conventional diagnostic categories, treatment unresponsive

e Sequencing the genomes of individuals with idiopathic conditions could shed light on origins
e Variants could be inherited in complex ways (e.g., compound heterozygotes) or be de novo

* Finding the pathogenic or causative variants among the many ‘candidates’ is problematic

e Strategies based on WGS, the use of reference genomes and bioinformatics tools exist



‘Filtering’ Strategies: Reference Genomes + Bioinformatics

Two reasonable(?) assumptions:

1. The pathogenic variant(s) is ‘novel’ (i.e., unique to the patient)
2. The effect of the variant is pronounced enough to be characterized bioinformatically

Novel Variant in Functional Element ..CGATCA..
B +7 CGATCA 1. Novel
Patient c G A CCAA
_ . |
A GATC 2. Damaging
A A
C 3. Relevant
Reference A Pathway
genomes A
C c 4. No
: Compensatory
c A Mechanism
A
C
T 5. Pathogenic

* What bioinformatic tools should be used for functionality? Does it make a difference?
 What reference populations for determining novelty should be used? Does it matter?



Filters to Identify Causative Variants in Single Genomes

 We ‘implanted’ known disease causative variants with Polyphen2 score > 0.8 in genomes

e Determined the observed number of novel functional variants with different reference

EUR vs ALL populations (PolyPhen score >= 0.8) AFR vs ALL populations (PolyPhen score >= 0.8)
European (13) European (13)
1400 = African (17) 1400 = African (17)
= Asian(8) = Asian(8)
1200 1200~

oW o
£ 1000 £ 1000
.@© ©
= =
© ©
> >
2 800 Q@ soo-
[=] o
c c
I+ B3

600 600 -

400 400~

200 1 1 1 1 | 1 | 1 200 1 | 1 | 1 1 1 1

0 2 4 ] 8 10 12 14 16 0 2 4 6 8 10 12 14 16
# individuals # individuals

e Determining the novelty of a variant requires ancestry-appropriate reference genomes...

e This has implications for clinical studies as well as rare variant, GWAS-seq studies



Genetic Networks and Network Analysis

NATURE | VOL 411 | 3 MAY 2001 brief communications

Lethahty and centrahty n protem networks

The { >d proteins in the cell & he me NP«

H. Jeong®, S. P. Masont, A.-L. Barabasi*,
Z.N. Oltvait

Figure 1 Characteristics of the yeast proteome. a, Map of protein—protein interactions. The largest cluster, which contains ~78% of all

Cell 744, March 18, 2011 22011
proteins, is shown. The colour of a node signifies the phenotypic effect of removing the corresponding protein (red, lethal; green, non-

- lethal: orange, slow growth; yellow. unknown). b, Connectivity distribution M) of interacting yeast proteins, giving the probability that a
I ntera cto me N etworks a nd H u ma n Dlsease given protein interacts with k other proteins. The exponential cut-off® indicates that the number of proteins with more than 20 interactions
is slightly less than expected for pure scale-free networks. In the absence of data on the link directions, all interactions have been cansid-
ered as bidirectional. The parameter controlling the short-length scale correction has value k;=1. ¢, The fraction of essential proteins
with exactly k links versus their connectivity, &, in the yeast proteome. The list of 1,572 mutants with known phenotypic profile was
abtained from the Proteome database'. Detailed statistical analysis, including r=0.75 for Pearson's linear comelation coefficient,

demonstrates a positive correlation between lethality and connectivity. For additional details, see htp:/fwww.nd edu/~networks/cell.

Marc Vidal,’2* Michael E. Cusick,'2 and Albert-Laszlo Barabasi'-®4*

Aa Human disease network

NATURE REVIEWS | GENETICS VOLUME 12 [JANUARY 2011

Network medicine: a network-based
approach to human disease

Albert-LaszI6 Barabdsi**$, Natali Gulbahce**! and Joseph Loscalzo$

How can one leverage network information in drug matching algorithms?



Network Centrality Measures

Degree Centrality 0 &)
e Number of nodes connected to a given node °v°?“v°‘\\°\o 0[ o (=)
e How well a node is connected; direct influence o’j O e ©

Closeness Centrality
e Sum of shortest distance (path) to all other nodes

* Inverse measure of centrality

Betweenness Centrality

(M) (o)
* Frequency that node=shortest path between 2 nodes 0'0?‘%@- 0 Qﬁo 02020
e Control of communication between other nodes O, O O

Many other measures of node’s importance in a network...



Whither Pathway Information?

 What source of pathway definitions?: e.g., KEGG vs. wikipathway
e How broad should Protein-Protein Interaction (PPI) networks be?

5 P:u!n
T HE:E. - i
Loz ] e
T c 4 w e
Chsrieal MAF kinawe i
patieeay o _ [mau]
| . =
[BOHE |—e{Taas] ] | g
- * [ r ~2
[mzal \ i [easged] / Lol i g
1 . Sealold s T —
[Ear _—={gam .| 1 . |‘s‘.n_f o= Rk —
3 ) . p _
Lo m—lﬁ’ * e e B ] vo o T o+ o
= — ol e i o o i
) |/ ST ] =
T+ N\ [ o =)
bof Y -
————————————————————— S —"
.'l 35T \"\r
I and AP M [rol wErr | N
Py o}y [ LEU (RERB) (GHL] [pa] o+ [HEAE
alfiedd - [MFAT. —

[_l' HOH 5‘ = -p"i_l‘\li‘ MK ]
T M. —, o ——————
+p_INE )

= 2
JmlP/ﬁuu'l] E Mw&nwul ATAN (8= HA 3

ot ] '1|" [\ Ne
e

& s [ 4 £
/ IEr Umm | mn - [
/ [ E —
; wux l__‘u- T o |'J 3_0 [ | B — | | ‘
iz .' Vo / - g b
N — roeig L o [ [Eman] " | |
=1 N e e 4 I
[ERsid—s{pa] . N |hSFI L ey e, BEE » o . -
me - ] DHA Vo
LN Tl F————#{TaKL} -\\. \ [bar) /
¥ i _:tmul -~ = -F— \ [l \‘J‘
s “inuu-sa & 8\, ot S{FEPT]

~(E=m - " .

AL | DA Brllton, i

MAPEEKE  MAPKEE MAPKE MAFE Truecripran

010 N
(6] Kok Labcouorios

MAPK: KEGG MAPK: WIKIPATHWAY



(normalized)
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PPl Sub-Network of MAPK Pathway:
High-ranking central nodes
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top 20 of 27 nodes

WIKIPATHWAY

?c_,'b P? (’9\\?

4?

1&\0?‘“%0"&90

Network diameter: 3;
characteristic path length: 1.73

& o 71
ss‘@?%e?'

top 20 of 121 nodes
1 S S S SR S S E B A A A

o L LTI b o b
0.9F S SIS ) L B
e p it T T e e
08f © R e e
: SR :
507 EEEEEEEEE R
@ . . . . . . . . . .
N : Do : Lo : Lo
£ 06/ [ R S
S ‘ L : - : L
c Dy B : Lo
~ 05} . : . AN . . : : : :
—=—degree centrality j
0.4} —<— betweenness cent.| ‘ Do

—=—1/closeness cent. b

0.3H —=—eigenvector cent. e

. 1K, (h=2)

R wv“:”* X, 1““ st ABpRes q_p 1““" “jlg’ "é@@‘*c‘

Network diameter: 3;
characteristic path length: 1.69




I MAPK SIGNALING PATHWAY
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